Наш опрос

Где вы учитесь?
Всего ответов: 4696

Полезная реклама

Форма входа

Поиск

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0

Каталог готовых работ

Главная » Предметы » Процессы и аппараты

Конструкция теплообменника
14.03.2009, 20:30

Теплообменниками называются аппараты, в которых происходит теплообмен, между рабочими средами не зависимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, концентраторы, пастеризаторы, испарители, деаэраторы, экономайзеры и д.р.)

Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых пе­редача тепла является основным процессом, и реакторы, в кото­рых тепловой процесс играет вспомогательную роль.

Классификация теплообменников возможна по различным признакам.

По способу передачи тепла различаются теплообменники смешения, в которых рабочие среды непосредственно соприка­саются или перемешиваются, и поверхностные теплообменни­ки – рекуператоры, в которых тепло передается через поверх­ность нагрева – твердую (металлическую) стенку, разделяю­щую эти среды.

По основному назначению различаются подогреватели, испа­рители, холодильники, конденсаторы.

В зависимости от вида рабочих сред различаются теплооб­менники:

а) жидкостно-жидкостные – при теплообмене между двумя жидкими средами;

б) парожидкостные – при теплообмене между паром и жид­костью (паровые подогреватели, конденсаторы);

в) газожидкостные – при теплообмене между газом и жид­костью (холодильники для воздуха) и др.

По тепловому режиму различаются теплообменники перио­дического действия, в которых наблюдается нестационарный тепловой процесс, и непрерывного действия с установившимся во времени процессом.

В теплообменниках периодического действия тепловой обра­ботке подвергается определенная порция (загрузка) продукта. Вследствие изменения свойств продукта и его количества пара­метры процесса непрерывно варьируют в рабочем объеме аппа­рата во времени.

В качестве теплоносителя наиболее широко применяются насыщенный или слегка перегретый водяной пар. В смеситель­ных аппаратах пар обычно барботируют в жидкость (впускают под уровень жидкости); при этом конденсат пара смешивается с продуктом, что не всегда допустимо. В поверхностных аппара­тах пар конденсируется на поверхности нагрева и конденсат удаляется отдельно от продукта с помощью водоотводчиков. Водяной пар как теплоноситель обладает множеством преиму­ществ: легкостью транспортирования по трубам и регулирова­ния температуры, высокой интенсивностью теплоотдачи и др. Применение пара особенно выгодно при использовании принципа  многократного испарения, когда выпариваемая из продукт вода направляется в виде греющего пара в другие выпарные аппараты и подогреватели.

Обогрев горячей водой и жидкостями также имеет широкое применение и выгоден при вторичном использовании тепла конденсатов и жидкостей (продуктов), которые по ходу технологи­ческого процесса нагреваются до высокой температуры. В срав­нении с паром жидкостный подогрев менее интенсивен и отли­чается переменной, снижающейся температурой теплоносителя. Однако регулирование процесса и транспорт жидкостей так же удобны, как и при паровом обогреве.

Общим недостатком парового и водяного обогрева является быстрый рост давления с повышением температуры. В услови­ях технологической аппаратуры пищевых производств при паро­вом и водяном обогреве наивысшие температуры ограничены 150-160°С, что соответствует давлению (5-7) 105 Па.

В отдельных случаях (в консервной промышленности) при­меняется масляный обогрев, который позволяет при атмосфер­ном давлении достигнуть температур до 200°С.

Широко применяется обогрев горячими газами и воздухом (до 300-1000°С) в печах, сушильных установках. Газовый обо­грев отличается рядом недостатков: трудностью регулирования и транспортирования теплоносителя, малой интенсивностью теп­лообмена, загрязнением поверхности аппаратуры (при исполь­зовании топочных газов) и др. Однако в ряде случаев он явля­ется единственно возможным (например, в воздушных сушил­ках).

В холодильной технике используется ряд хладагентов: воз­дух, вода, рассолы, аммиак, углекислота, фреон и др.

При любом использовании теплоносителей и хладагентов тепловые и массообменные процессы подчинены основному – технологическому процессу производства, ради которого созда­ются теплообменные аппараты и установки. Поэтому решение задач оптимизации теплообмена подчинено условиям рациональ­ного технологического процесса.

Для нагревания и охлаждения жидких сред разработаны теплообменники разнообразных конструкций. Ниже рассматри­ваются некоторые конструкции теплообменных аппаратов, при­меняющихся в пищевой промышленности.

Конкретная задача нагревания или охлаждения данного про­дукта может быть решена с помощью различных теплообмен­ников. Конструкцию теплообменника следует выбирать, исходя из следующих основных требований, предъявляемых к теплообменным аппаратам.

Важнейшим требованием является соответствие аппарата технологическому процессу обработки данного продукта; это до­стигается при таких условиях: поддержание необходимой темпе­ратуры процесса, обеспечение возможности регулирования тем­пературного режима; соответствие рабочих скоростей продукта минимально необходимой продолжительности пребывания про­дукта в аппарате; выбор материала аппарата в соответствии с химическими свойствами продукта; соответствие аппарата давлениям рабочих сред.

Вторым требованием является высокая эффективность и экономичность работы аппарата, связанные с повышением интенсивности теплообмена и одновременно с соблюдением оптимальных гидравлических сопротивлений аппа­рата.

Эти основные требования должны быть положены в основу конструирования и выбора теплообменных аппаратов. При этом самое большое значение имеет обеспечение заданного техноло­гического процесса в аппарате.

Более подробно рассмотрим конструкции спиральных теплообменников.

В общем случае этот тип теплообменников применяется для взаимодействия сред "жидкость-жидкость". Например, греющая жидкость поступает в аппарат через патрубок С, протекает по спирали и покидает аппарат через осевой патрубок D, а нагреваемая жидкость поступает в аппарат через осевой патрубок А и покидает его после протекания через спираль в противотоке греющей среде через патрубок В (рис. 1). Для организации параллельного движения потоков, нагреваемая среда должна поступать через патрубок В и покидать аппарат через патрубок А.

Это самая распространенная конструкция. Герметизацию спиралей называют при этом переменной, поскольку плоские крышки герметизируют каналы каждая со своей стороны. Доступ к обоим каналам в каждом случае возможен после демонтажа соответствующей крышки.

На рис. 2 изображены  спиральные теплообменники с перекрёстным движением сред. Эта конструкция применяется в конденсаторах, в основном при пониженном давлении, при этом значительный объем потока пара пускают через большие поперечные сечения спиралей (вдоль осей спиралей). За счет этого достигается быстрое охлаждение пара при избежании большой потери давления. Охлаждающая жидкость движется по закрытому спиральному каналу. Пар подается через спираль вдоль оси спирали и охлаждается.

В некоторых случаях требуется приведение теплообменника в горизонтальное положение (рис. 3), в особенности, при использовании жидкостей, содержащих твердые частицы, волокна и т.п. во избежание их скапливания в нижней части теплообменника под действием силы тяжести.
При горизонтальном расположении, внутри кожуха спиральные теплообменники в который поступает пар, устанавливается горизонтальная перегородка приблизительно на 2/3 ширины спирали. В результате поступающий через верхнюю половину спирали пар вынужден выходить через ее нижнюю половину. Охлаждающая жидкость поступает через боковой патрубок и покидает спиральный теплообменник через осевой патрубок.

Уважаемый посетитель, для того чтобы скачать весь реферат - кликните пожалуйста по рекламе ниже
Категория: Процессы и аппараты | Добавил: dostup
Просмотров: 1741 | Загрузок: 225 | Комментарии: 1 | Рейтинг: 5.0/2 |
Всего комментариев: 1
1 sultan  
0
теплообменик